РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ: СПЕКТРОХИМИЧЕСКИЙ РЕНТГЕНОВСКИЙ АНАЛИЗ - définition. Qu'est-ce que РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ: СПЕКТРОХИМИЧЕСКИЙ РЕНТГЕНОВСКИЙ АНАЛИЗ
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ: СПЕКТРОХИМИЧЕСКИЙ РЕНТГЕНОВСКИЙ АНАЛИЗ - définition

Рентгено-флюоресцентный анализ; Рентгеновский флуоресцентный анализ
  • Спектр, выполненный спектрометром

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ: СПЕКТРОХИМИЧЕСКИЙ РЕНТГЕНОВСКИЙ АНАЛИЗ      
К статье РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ
Уже через несколько лет после открытия рентгеновских лучей Ч.Баркла (1877-1944) обнаружил, что при воздействии потока рентгеновского излучения высокой энергии на вещество возникает вторичное флуоресцентное рентгеновское излучение, характеристическое для исследуемого элемента. Вскоре после этого Г.Мозли в серии своих экспериментов измерил длины волн первичного характеристического рентгеновского излучения, полученного электронной бомбардировкой различных элементов, и вывел соотношение между длиной волны и атомным номером. Эти эксперименты, а также изобретение Брэггом рентгеновского спектрометра заложили основу для спектрохимического рентгеновского анализа.
Возможности рентгеновского излучения для химического анализа были сразу осознаны. Были созданы спектрографы с регистрацией на фотопластинке, в которых исследуемый образец выполнял роль анода рентгеновской трубки. К сожалению, такая техника оказалась очень трудоемкой, а потому применялась лишь тогда, когда были неприменимы обычные методы химического анализа. Выдающимся примером новаторских исследований в области аналитической рентгеноспектроскопии стало открытие в 1923 Г.Хевеши и Д.Костером нового элемента - гафния. Разработка мощных рентгеновских трубок для рентгенографии и чувствительных детекторов для радиохимических измерений во время Второй мировой войны в значительной степени обусловила быстрый рост рентгеновской спектрографии в последующие годы.
Этот метод получил широкое распространение благодаря быстроте, удобству, неразрушающему характеру анализа и возможности полной или частичной автоматизации. Он применим в задачах количественного и качественного анализа всех элементов с атомным номером более 11 (натрий). И хотя рентгеновский спектрохимический анализ обычно используется для определения важнейших компонентов в образце (с содержанием 0,1-100%), в некоторых случаях он пригоден для концентраций 0,005% и даже ниже.
Рентгеновский спектрометр. Современный рентгеновский спектрометр состоит из трех основных систем (рис. 11): системы возбуждения, т.е. рентгеновской трубки с анодом из вольфрама или другого тугоплавкого материала и блоком питания; системы анализа, т.е. кристалла-анализатора с двумя многощелевыми коллиматорами, а также спектрогониометра для точной юстировки; и системы регистрации со счетчиком Гейгера либо пропорциональным или сцинтилляционным счетчиком, а также выпрямителем, усилителем, пересчетными устройствами и самописцем или другим регистрирующим устройством.
Рентгеновский флуоресцентный анализ. Анализируемый образец располагается на пути возбуждающего рентгеновского излучения. Исследуемая область образца обычно выделяется маской с отверстием нужного диаметра, а излучение проходит через коллиматор, формирующий параллельный пучок. За кристаллом-анализатором щелевой коллиматор выделяет дифрагированное излучение для детектора. Обычно максимальный угол . ограничивается значениями 80-85?, так что дифрагировать на кристалле-анализаторе может только то рентгеновское излучение, длина волны . которого связана с межплоскостным расстоянием d неравенством . < 1,95d. Максимальной же разрешающей способности можно добиться, уменьшая величину d. Наилучшие результаты получены с кристаллами-анализаторами из топаза, фторида лития, хлорида натрия, кварца и др. Кроме того, в спектрометрах с изогнутыми кристаллами, о которых говорится ниже, иногда используются кристаллы слюды и гипса.
Рентгеновский микроанализ. Описанный выше спектрометр с плоским кристаллом-анализатором может быть приспособлен для микроанализа. Это достигается сужением либо первичного пучка рентгеновского излучения, либо вторичного пучка, испускаемого образцом. Однако уменьшение эффективного размера образца или апертуры излучения приводит к уменьшению интенсивности регистрируемого дифрагированного излучения. Улучшение этого метода может быть достигнуто применением спектрометра с изогнутым кристаллом, позволяющего регистрировать конус расходящегося излучения, а не только излучение, параллельное оси коллиматора. При помощи такого спектрометра можно идентифицировать частицы размером менее 25 мкм. Еще большее уменьшение размера анализируемого образца достигается в электронно-зондовом рентгеновском микроанализаторе, изобретенном Р.Кастэном. Здесь остросфокусированным электронным лучом возбуждается характеристическое рентгеновское излучение образца, которое затем анализируется спектрометром с изогнутым кристаллом. С помощью такого прибора удается обнаруживать количества вещества порядка 10-14 г в образце диаметром 1 мкм. Были также разработаны установки с электроннолучевым сканированием образца, с помощью которых можно получить двумерную картину распределения по образцу того элемента, на характеристическое излучение которого настроен спектрометр.
Спектральный анализ рентгеновский         
  • кристаллографической плоскостью]] <math>10\bar{1}1.</math> Римскими цифрами I, II, III отмечены дифракционные спектры 1-го, 2-го и 3-го порядков.

элементный анализ вещественного состава материалов по их рентгеновским спектрам (См. Рентгеновские спектры). Качеств. С. а. р. выполняют по спектральному положению характеристических линий в спектре испускания исследуемого образца, его основой является Мозли закон; количественный С. а. р. осуществляют по интенсивностям этих линий. Методами С. а. р. могут быть определены все элементы с атомным номером Z ≥ 12 (в некоторых случаях - и более лёгкие). Порог чувствительности С. а. р. в большинстве случаев Спектральный анализ рентгеновский 10-2-10-4 \%, продолжительность его (вместе с подготовкой пробы) несколько мин. С. а. р. не разрушает пробу.

Наиболее распространённый вид С. а. р. - анализ валового состава материалов по их флуоресцентному рентгеновскому излучению. Выполняется он по относительной интенсивности линий, которая измеряется с высокой точностью спектральной аппаратурой рентгеновской (См. Спектральная аппаратура рентгеновская). Относительная точность количественного С. а. р. колеблется от 0,3 до 10\% в зависимости от состава пробы; на интенсивность аналитической линии каждого элемента влияют все остальные элементы пробы. Поэтому одной и той же измеренной интенсивности I1 аналитической линии i могут соответствовать различные концентрации C1, C2, С3, ... определяемого элемента (см. рис.) в зависимости от наполнителя - состава пробы за исключением определяемого элемента. Вследствие этого т. н. вырождения интенсивности по концентрации С. а. р. возможен лишь на основе общей теории зависимости li от концентраций всех n компонентов пробы - системы n уравнений связи.

На основе общей теории анализа разработано несколько частных методов. При отсутствии в пробе мешающих элементов можно применять простейший из них - метод внешнего стандарта: измерив интенсивность аналитической линии пробы, по аналитическому графику образца известного состава (стандарта) находят концентрацию исследуемого элемента. Для многокомпонентных проб иногда применяют метод внутреннего стандарта, в котором ординатой аналитического графика служит отношение интенсивностей линий определяемого элемента и внутреннего стандарта - добавленного в пробу в известном количестве элемента, соседнего (в периодической системе элементов) с определяемым. Во многих случаях успешно применяют метод добавок в пробу в известном количестве определяемого элемента или наполнителя. По изменению интенсивности аналитической линии можно найти первоначальную концентрацию определяемого элемента.

В промышленности применяют метод стандарта-фона, в котором ординатой аналитического графика является отношение интенсивности аналитической линии флуоресцентного излучения образца и близкой к ней линии первичного рентгеновского излучения, рассеянного пробой. Это отношение во многих случаях мало зависит от состава наполнителя. Для анализа сложных многокомпонентных проб полную систему уравнений связи расшифровывают на ЭВМ по методу последовательных (обычно трёх-четырёх) приближений.

С. а. р. валового состава нашёл применение на обогатительных фабриках цветной металлургии - для контрольных целей и для экспрессного анализа; на металлургических заводах - для определения потерь металла в шлаках, маркировки сплавов сложного состава, контроля состава латуней в процессе плавки и т. д.; на цементных заводах - для контроля состава цементно-сырьевых смесей. Валовый С. а. р. применяется также для силикатного анализа.

Рентгеновский микроанализ (локальный анализ) участков пробы Спектральный анализ рентгеновский 1-3 мкм2 (т. е. меньше размеров зерна сплава) выполняют с помощью электронно-зондового микроанализатора по рентгеновскому спектру исследуемого участка. Он требует точного введения поправок на атомный номер определяемого элемента, поглощение его излучения в пробе и его флуоресценцию, возбуждаемую тормозной компонентой излучения и характеристическим излучением др. элементов пробы.

Микроанализ применяют при исследовании взаимной диффузии двух- и трёх-компонентных систем; процессов кристаллизации (См. Кристаллизация) (по дендритной ликвации, сегрегации примесных атомов на дислокациях основного компонента, концентрации некоторых фаз на границе зёрен); локальных флуктуаций состава плохо гомогенизированных сплавов и пр.

Лит.: Блохин М. А., Методы рентгено-спектральных исследований, М., 1959; Блохин М. А., Ильин Н. П., Рентгеноспектральный анализ, "Журнал аналитической химии", 1967, т. 22, в. 11; Лосев Н. Ф., Количественный рентгеноспектральный флуоресцентный анализ, М., 1969; Плотников Р. И., Пшеничный Г. А.,

флюоресцентный рентгенорадиометрический анализ, М., 1973; Бирке Л. С., Рентгеновский микроанализ с помощью электронного зонда, пер. с англ., М., 1966; Физические основы рентгеноспектрального локального анализа, пер. с англ., М., 1973; Электронно-зондовый микроанализ, пер. с англ., М., 1974.

М. А. Блохин.

Графики зависимости интенсивности li аналитич. линии i от концентрации С определяемого элемента (аналитические графики) для случаев, когда поглощение наполнителя меньше (1), равно (2) или больше (3) поглощения определяемого элемента, Iф - интенсивность фона.

Рентгенофлуоресцентный анализ         
Рентгенофлуоресцентный анализ (РФА) — один из современных спектроскопических методов исследования вещества с целью получения его элементного состава, то есть его элементного анализа. С помощью него могут быть найдены различные элементы от бериллия (Be) до урана (U).

Wikipédia

Рентгенофлуоресцентный анализ

Рентгенофлуоресцентный анализ (РФА) — один из современных спектроскопических методов исследования вещества с целью получения его элементного состава, то есть его элементного анализа. С помощью него могут быть найдены различные элементы от бериллия (Be) до урана (U). Метод РФА основан на сборе и последующем анализе спектра, возникающего при облучении исследуемого материала рентгеновским излучением. При взаимодействии с высокоэнергетичными фотонами атомы вещества переходят в возбуждённое состояние, что проявляется в виде перехода электронов с нижних орбиталей на более высокие энергетические уровни вплоть до ионизации атома. В возбуждённом состоянии атом пребывает крайне малое время, порядка одной микросекунды, после чего возвращается в спокойное положение (основное состояние). При этом электроны с внешних оболочек заполняют образовавшиеся вакантные места, а излишек энергии либо испускается в виде фотона, либо энергия передается другому электрону из внешних оболочек (оже-электрон)[уточнить]. При этом каждый атом испускает фотон с энергией строго определённого значения, например железо при облучении рентгеновскими лучами испускает фотоны Кα = 6,4 кэВ. Далее соответственно по энергии и количеству квантов судят о строении вещества.

В качестве источника излучения могут использоваться как рентгеновские трубки, так и изотопы каких-либо элементов. Поскольку каждая страна имеет свои требования к ввозу и вывозу излучающих изотопов, в производстве рентгенофлуоресцентной техники в последнее время стараются использовать, как правило, рентгеновскую трубку. Трубки могут быть как с родиевым, так и с медным, молибденовым, серебряным или другим анодом. Анод трубки, в некоторых случаях, выбирается в зависимости от типа задачи (элементов, требующих анализа), для решения которой будет использоваться данный прибор. Для разных групп элементов используются различные значения силы тока и напряжения на трубке. Для исследования лёгких элементов вполне достаточно установить напряжение 10 кВ, для средних 20-30 кВ, для тяжелых — 40-50 кВ. Кроме того, при исследовании лёгких элементов большое влияние на спектр оказывает атмосфера, поэтому камеру с образцом либо вакуумируют либо заполняют гелием. После возбуждения спектр регистрируется на специальном детекторе. Чем лучше спектральное разрешение детектора, тем точнее он сможет отделять друг от друга фотоны от разных элементов, что в свою очередь скажется и на точности самого прибора. В настоящее время[когда?] наилучшей возможной разрешающей способностью детектора является 123 эВ.

После попадания на детектор фотон преобразовывается в импульс напряжения, который в свою очередь подсчитывается счётной электроникой и наконец передается на компьютер. Ниже приведён пример спектра, полученный при анализе корундовой ступки (содержание Al2O3 более 98 %, концентрации Ca, Ti порядка 0,05 %). По пикам полученного спектра можно качественно определить, какие элементы присутствуют в образце. Для получения точного количественного содержания необходимо обработать полученный спектр с помощью специальной программы калибровки (количественной градуировки прибора). Калибровочная программа должна быть предварительно создана с использованием стандартных образцов, чей элементный состав точно известен. Упрощённо, при количественном анализе спектр неизвестного вещества сравнивается со спектрами, полученными при облучении стандартных образцов, таким образом получается информация о количественном составе вещества.

Рентгенофлуоресцентный метод широко используется в промышленности, научных лабораториях. Благодаря простоте, возможности экспресс-анализа, точности, отсутствию сложной пробоподготовки, сферы его применения продолжают расширяться.

Qu'est-ce que РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ: СПЕКТРОХИМИЧЕСКИЙ РЕНТГЕНОВСКИЙ АНАЛИЗ - définition